A Convergence Rate Analysis for LogitBoost, MART and Their Variant

نویسندگان

  • Peng Sun
  • Tong Zhang
  • Jie Zhou
چکیده

LogitBoost, MART and their variant can be viewed as additive tree regression using logistic loss and boosting style optimization. We analyze their convergence rates based on a new weak learnability formulation. We show that it has O( 1 T ) rate when using gradient descent only, while a linear rate is achieved when using Newton descent. Moreover, introducing Newton descent when growing the trees, as LogitBoost does, leads to a faster linear rate. Empirical results on UCI datasets support our analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost

Logitboost is an influential boosting algorithm for classification. In this paper, we develop robust logitboost to provide an explicit formulation of tree-split criterion for building weak learners (regression trees) for logitboost. This formulation leads to a numerically stable implementation of logitboost. We then propose abc-logitboost for multi-class classification, by combining robust logi...

متن کامل

An Empirical Evaluation of Four Algorithms for Multi-Class Classification: Mart, ABC-Mart, Robust LogitBoost, and ABC-LogitBoost

This empirical study is mainly devoted to comparing four tree-based boosting algorithms: mart, abc-mart, robust logitboost, and abc-logitboost, for multi-class classification on a variety of publicly available datasets. Some of those datasets have been thoroughly tested in prior studies using a broad range of classification algorithms including SVM, neural nets, and deep learning. In terms of t...

متن کامل

ABC-LogitBoost for Multi-class Classification

We develop abc-logitboost, based on the prior work on abc-boost[10] and robust logitboost[11]. Our extensive experiments on a variety of datasets demonstrate the considerable improvement of abc-logitboost over logitboost and abc-mart.

متن کامل

On new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces

In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.

متن کامل

On the approximation by Chlodowsky type generalization of (p,q)-Bernstein operators

In the present article, we introduce Chlodowsky variant of $(p,q)$-Bernstein operators and compute the moments for these operators which are used in proving our main results. Further, we study some approximation properties of these new operators, which include the rate of convergence using usual modulus of continuity and also the rate of convergence when the function $f$ belongs to the class Li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014